On R_K and the global significance of new physics in $b \rightarrow s\ell\ell$ decays

SPS ÖPG joint annual meeting 2021
Universität Innsbruck
Rare decays as New Physics probes

- Rare $b \rightarrow s\ell\ell$ decays are sensitive New Physics (NP) probes since they are loop level and CKM suppressed.

- NP contributions could be of same size as the SM (e.g. enhancing/suppressing branching fractions).

- In the Standard Model (SM) couplings of vector bosons to leptons are flavour universal (LFU): any deviation from LFU is a clear NP indication.

$$\begin{align*}
B^+\left\{ \begin{array}{c}
u \\ \bar{b} & \end{array} \right\} W^+ & \rightarrow \left\{ \begin{array}{c}
u \\ \bar{s} \end{array} \right\} K^+ \\
\gamma/Z^0 & \rightarrow \ell^+ \ell^-
\end{align*}$$

$$\begin{align*}
B^+\left\{ \begin{array}{c}
u \\ \bar{b} & \end{array} \right\} LQ & \rightarrow \left\{ \begin{array}{c}
u \\ \bar{s} \end{array} \right\} K^+ \\
\ell^+ & \rightarrow \ell^-
\end{align*}$$

NP example
A coherent pattern?

Over the past decade a coherent set of tensions with SM predictions has emerged in $b \to s\ell\ell$ transitions (see Elena’s talk):

- Branching fractions (e.g. $B_s \to \mu^+\mu^-$, $B \to K^{(*)}\mu^+\mu^-$, $B_s^0 \to \phi\mu^+\mu^-$).
- Angular observables (e.g. $B^0 \to K^{*0}\mu^+\mu^-$).
- LFU probes involving μ/e ratios (e.g. $B^0 \to K^{*0}\ell\ell$, $B^+ \to K^+\ell\ell$).

D. Lancierini (Universität Zürich)

On R_K and the global significance of NP in $b \to s\ell\ell$ decays

31. August 2021

LHCb Run 1 + 2016

$R_K^{=}$

P_{S}^{*}

$dB/dq^2[10^8 \times c^2/GeV^2]$
The R_K observable

- $B \to K^{(*)} \mu^+ \mu^-$ BF and angular observables known to suffer from potentially underestimated hadronic uncertainties.
The R_K observable

- $B \to K^{(*)} \mu^+ \mu^-$ BF and angular observables known to suffer from potentially underestimated hadronic uncertainties.

- A theoretically clean observable is:

$$R_K = \frac{\int_{q^2 = 6 \text{ GeV}^2}^{q^2 = 1.1 \text{ GeV}^2} dB(B^+ \to K^+ \mu^+ \mu^-) dq^2}{\int_{q^2 = 6 \text{ GeV}^2}^{q^2 = 1.1 \text{ GeV}^2} dB(B^+ \to K^+ e^+ e^-) dq^2} \equiv 1 \pm O(10^{-2})$$

- Previous LHCb measurement [PRL 122 (2019) 1911801] exhibits tension with SM at 2.5σ level using $5 fb^{-1}$ collected up to 2016.
 - The 2021 update adds $4 fb^{-1}$ collected in 2017/18.
 - Effectively doubles the dataset with respect to previous analysis.
 - Follows identical analysis strategy as previous analysis.
R_K measurement at LHCb

- Two main ingredients for this measurement: **yields and efficiencies**:

 \[
 R_K = \frac{N(B^+ \rightarrow K^+\mu\mu)}{N(B^+ \rightarrow K^+ee)} \frac{\varepsilon(B^+ \rightarrow K^+ee)}{\varepsilon(B^+ \rightarrow K^+\mu\mu)}
 \]

- Electrons and muons interact differently with the detector:
 - Different **trigger strategy** and **particle identification efficiencies**.
 - Electrons lose significant amount of energy to **bremsstrahlung radiation**:
 - Poorer **mass resolution** and **reconstruction efficiency** than muons.
 - Effect mitigated by **bremsstrahlung recovery algorithm**.
R_K measurement at LHCb

Control electron-muon differences using double ratio between nonresonant $B^+ \rightarrow K^+ \ell^+ \ell^-$ and resonant $B^+ \rightarrow K^+ J/\psi(\ell^+ \ell^-)$.

$$R_K = \frac{N(K^+\mu\mu) \varepsilon(K^+ee)}{N(K^+ee) \varepsilon(K^+\mu\mu)} \bigg/ \frac{N(K^+ J/\psi(\mu\mu)) \varepsilon(K^+ J/\psi(ee))}{N(K^+ J/\psi(ee)) \varepsilon(K^+ J/\psi(\mu\mu))}$$

J/ψ known to be LFU within 0.4% [PDG]
Control electron-muon differences using double ratio between nonresonant \(B^+ \to K^+ \ell^+ \ell^- \) and resonant \(B^+ \to K^+ J/\psi(\ell^+ \ell^-) \).

\[
R_K = \frac{N(K^+ \mu\mu)}{N(K^+ J/\psi(\mu\mu))} \frac{\varepsilon(K^+ J/\psi(\mu\mu))}{\varepsilon(K^+\mu\mu)} \frac{N(K^+ ee)}{N(K^+ J/\psi(ee))} \frac{\varepsilon(K^+ J/\psi(ee))}{\varepsilon(K^+ee)}
\]

known to be LFU within 0.4% [PDG]

D. Lancierini (Universität Zürich)

On \(R_K \) and the global significance of NP in \(b \to s\ell\ell' \) decays

31. August 2021
Efficiency calibration

Efficiencies are estimated from simulated samples and calibrated using data, following identical procedure as in the previous analysis:

- Calibration of B^+ kinematics;
- Particle identification efficiency calibration (method described in [EPJ T&I (2019) 6:1]);
- Trigger efficiency (plot on the right);
- Resolution of q^2 and of reconstructed B^+ mass;

Leads to excellent agreement between data and simulation
- Extensive cross checks to verify procedure

Measurement of the electron trigger efficiency using $B^+ \rightarrow K^+ J/\psi (ee)$ data
Cross check: $r_{J/\psi}$ single ratio

\[r_{J/\psi} = \frac{N(K^+ J/\psi(\mu\mu))}{N(K^+ J/\psi(ee))} \frac{\varepsilon(K^+ J/\psi(ee))}{\varepsilon(K^+ J/\psi(\mu\mu))} \]

- Single ratio requires direct control of electrons with respect to muons:
 - Stringent cross-check of efficiencies.

Measured value: $r_{J/\psi} = 0.981 \pm 0.020$ (stat & syst)
Cross check: $r_{J/\psi}$ single ratio

$$r_{J/\psi} = \frac{N(K^+ J/\psi(\mu\mu))}{N(K^+ J/\psi(ee))} \frac{\varepsilon(K^+ J/\psi(\mu\mu))}{\varepsilon(K^+ J/\psi(ee))}$$

- Single ratio requires direct control of electrons with respect to muons
 - Stringent cross-check of efficiencies

Measured value: $r_{J/\psi} = 0.981 \pm 0.020$ (stat & syst)

- Cross check that efficiencies are understood in all kinematic regions by checking $r_{J/\psi}$ is flat in all variables relevant to the detector response.
 - If deviations from flatness is actually due to efficiency mismodelling, impact on R_K is of 0.1%.
R_K is extracted as a parameter from a simultaneous unbinned maximum likelihood fit to all $B^+ \to K^+ \ell^+ \ell^-$ data:

\[R_K \]

\[
N(K^+\mu^+\mu^-) \sim 3850
\]

\[
N(K^+e^+e^-) \sim 1640
\]
R_K with full Run1 and Run2 LHCb data

Result obtained for R_K:

$$R_K = 0.846^{+0.042}_{-0.039} \text{ (stat.)} +0.013 -0.012 \text{ (syst.)}$$

- Dominant systematic effect: fit model.
 - Trigger and kinematic calibration are at permille-level.
- P-value under the SM hypothesis: 0.0010
 - Evidence of LFU violation at 3.1σ.
- Compatibility with SM obtained integrating the profiled likelihood as a function of R_K above 1
The bigger picture

- EFT is a model independent approach, assuming no light NP in $b \to s\ell\ell$ transitions.

- Separate NP effects (Wilson coefficients C_i's) from long distance QCD effects (matrix elements O_i's) in a systematic OPE.

\[
\mathcal{H}_{b \to s}^{\text{EFT}} = -\frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \sum_i (C_i O_i + C'_i O'_i)
\]

<table>
<thead>
<tr>
<th>Operator O_i</th>
<th>$B \to K^{*0}\gamma$</th>
<th>$B \to K^{*0}\mu^+\mu^-$</th>
<th>$B \to \mu^+\mu^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O_7 \sim m_b (\bar{s}L\sigma{\mu\nu}b_R) F_{\mu\nu}$</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>$O_9 \sim (\bar{s}b) V_A (\bar{\ell}\ell)_V$</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$O_{10} \sim (\bar{s}b) V_A (\bar{\ell}\ell)_A$</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>$O_{5,P} \sim (\bar{s}b) S_{+P} (\bar{\ell}\ell)_{S,P}$</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D. Lancierini (Universität Zürich)

On R_K and the global significance of NP in $b \to s\ell\ell$ decays

31. August 2021
The bigger picture

- NP models can coherently explain these “flavour anomalies”.

- However when performing global fits, choosing which WC to fit is based on the deviations seen in data.

- Might lead to overestimate the significance due to Look Elsewhere Effect (LEE).

Need to formulate an a-priori hypothesis for which the data has no influence.
Generic NP hypothesis

- Write down all independent combinations of dimension 6 operators contributing to $b \rightarrow s \ell \ell$ transitions

\[
O_9^{\ell} = (\bar{s}_L \gamma_\mu b_L)(\bar{\ell} \gamma_\mu \ell), \quad O_{10}^{\ell} = (\bar{s}_L \gamma_\mu b_L)(\bar{\ell} \gamma_\mu \gamma_5 \ell), \\
O_9^{\ell'} = (\bar{s}_R \gamma_\mu b_R)(\bar{\ell} \gamma_\mu \ell), \quad O_{10}^{\ell'} = (\bar{s}_R \gamma_\mu b_R)(\bar{\ell} \gamma_\mu \gamma_5 \ell), \\
O_8^{\ell} = (\bar{s}_L b_R)(\bar{\ell}_R \ell_L), \quad O_{8}^{\ell'} = (\bar{s}_R b_L)(\bar{\ell}_L \ell_R).
\]

- Include $R_K, R_{K^*}, B_s \rightarrow \mu \mu$ and $B \rightarrow K^* \mu \mu$ angular observables

- Generate toys based on SM predictions and experimental uncertainties. Fit all possible 1 or 2 WC combinations take the largest $\Delta \chi^2$ as test statistic
Generic NP hypothesis

- Write down all independent combinations of dimension 6 operators contributing to $b \to s\ell\ell$ transitions

\[
\mathcal{O}_9^\ell = (\bar{s}_L \gamma_\mu b_L)(\bar{\ell}\gamma_\mu \ell), \quad \mathcal{O}_{10}^\ell = (\bar{s}_L \gamma_\mu b_L)(\bar{\ell}\gamma_\mu \gamma_5 \ell), \\
\mathcal{O}_9^{\ell'} = (\bar{s}_R \gamma_\mu b_R)(\bar{\ell}\gamma_\mu \ell), \quad \mathcal{O}_{10}^{\ell'} = (\bar{s}_R \gamma_\mu b_R)(\bar{\ell}\gamma_\mu \gamma_5 \ell), \\
\mathcal{O}_S^\ell = (\bar{s}_L b_R)(\bar{\ell}_R \ell_L), \quad \mathcal{O}_{S'}^\ell = (\bar{s}_R b_L)(\bar{\ell}_L \ell_R).
\]

- Include R_K, R_{K^*}, $B_s \to \mu\mu$ and $B \to K^*\mu\mu$ angular observables

- Generate toys based on SM predictions and experimental uncertainties. Fit all possible 1 or 2 WC combinations take the larges $\Delta \chi^2$ as test statistic

Trial factor can be as large as 4/7 when varying 1/2 WCs
Generic NP hypothesis

- BF and $B \rightarrow K^{*}\mu\mu$ angular are affected by potentially large QCD uncertainties:
 - This is true for some angular observables but not all of them (charmloop cannot interfere with primed coefficients) → cannot ignore information from clean $B \rightarrow K^{*}\mu\mu$ angular observables
 - Any NP effect in C_9 is included as part of the SM definition, allow for a universal shift in C_9

- Generate toys based on SM predictions, central values fluctuated with the experimental sensitivity and evaluate:

$$\Delta \chi^2 = -2 \log \frac{\mathcal{L}(X | \Delta \hat{C}_9 \ , \ C_i^{SM})}{\mathcal{L}(X | \hat{C}_i)}$$

- This method allows to assess the probability to observe the numerical coherence that is seen in data by chance.

- Generic NP hypothesis gives $\sim 4\sigma$ global significance

D. Lancierini (Universität Zürich) On R_K and the global significance of NP in $b \rightarrow s\ell\ell$ decays 31. August 2021
Summary

- LHCb has performed the most precise measurement of the LFU ratio R_K using the full available dataset:
 - $3.1\, \sigma$ tension with SM prediction: first evidence of LFU violation in $B^+ \to K^+\ell^+\ell^-$ decays with a single measurement.

- It is of crucial importance to continue studying flavour anomalies, highly anticipated measurements are underway:
 - Updates of LFU observables with different decay modes and kinematic regions, as well as angular analyses of $B \to K^{(*)}\ell^+\ell^-$ and $B \to K^{(*)}\mu^+\mu^-$ decays.
 - Further validation of our understanding of low q^2 efficiencies with $D_s^+ \to \phi(\ell^+\ell^-)\pi^+$ decays.

- The LEE in $b \to s\ell\ell$ is sizeable and needs to be taken into account when performing global fits:
 - Nonetheless the global significance of the NP hypothesis in the $b \to s\ell\ell$ system is high.
 - Method allows for (relatively) easy addition of new $b \to s\ell\ell$ measurements.
Thanks for your attention!
Backup
The LHCb detector
The LHCb detector

- VErtex LOcator
 \[\sigma_{PV}^{xy} \sim 15\mu m \]
 \[\sigma_{PV}^z \sim 80\mu m \]
- Trackers
 \[\sigma_p / p \sim (0.1 - 0.6)\% \text{ GeV/c} \]
 at 5 - 100 GeV/c
The LHCb detector

\[\mu ID \in 97\%, (1 - 3)\% \pi \rightarrow \mu \]
\[e ID \in 95\%, 5\% e \rightarrow h \]
\[K ID \in 95\%, 5\% \pi \rightarrow K \]
The LHCb detector

Calorimeters

Muon stations
\(B^+ \rightarrow K^+ \ell^+ \ell^-\)

- Peaking structures: \(B^+ \rightarrow K^+ J/\psi(\ell^+ \ell^-)\) and \(B^+ \rightarrow K^+ \psi(2S)(\ell^+ \ell^-)\) (resonant decay modes)
- Diagonal elongations: radiative tails + incorrectly-added bremsstrahlung
- Vertical band: \(B^+ \rightarrow K^+ \ell^+ \ell^-\) (rare decay mode)

D. Lancierini (Universität Zürich) On \(R_K\) and the global significance of NP in \(b \rightarrow s\ell\ell\) decays 31. August 2021
Selection

Requirements on reconstructed data, unchanged w.r.t. previous R_K analysis

- **High quality tracks** and reconstructed B^+ decay vertex

- **Particle identification** (PID) on kaon and lepton candidates, to suppress background from mis-ID

- **Trigger** requirements (more on next slide)

- **Mass vetoes** in order to suppress semileptonic cascades

- **Multivariate selection** to suppress combinatorial background
Trigger strategy

- For muon channels, trigger on L0 Muon
- For electron channels, three exclusive trigger categories:
 - L0 Electron, L0 Hadron and L0 TIS.
- Systematics evaluated and cross-checks performed individually on each trigger category
Efficiency calibration

Efficiencies are estimated from simulated samples and calibrated using data, following identical procedure as in the previous analysis:

- Particle identification efficiency calibration;
- Trigger efficiency;
- Calibration of B^+ kinematics;
- Resolution of q^2 and of reconstructed B^+ mass;

Fit to the data sample used as a source of π^\pm and K^\pm calibration.
Efficiency calibration

Efficiencies are estimated from simulated samples and calibrated using data, following identical procedure as in the previous analysis:

- Particle identification efficiency calibration;
- Trigger efficiency;
- Calibration of B^+ kinematics;
- Resolution of q^2 and of reconstructed B^+ mass;

Measurement of the electron trigger efficiency using $B^+ \rightarrow K^+ J/\psi(ee)$ data
Efficiency calibration

Efficiencies are estimated from simulated samples and calibrated using data, following identical procedure as in the previous analysis:

- Particle identification efficiency calibration;
- Trigger efficiency;
- Calibration of B^+ kinematics;
- Resolution of q^2 and of reconstructed B^+ mass;

Transverse momentum spectrum of $B^+ \to K^+ J/\psi(\mu\mu)$ calibration data vs simulation

D. Lancierini (Universität Zürich)
Efficiency calibration

Efficiencies are estimated from simulated samples and calibrated using data, following identical procedure as in the previous analysis:

- Particle identification efficiency calibration;
- Trigger efficiency;
- Calibration of B^+ kinematics;
- Resolution of q^2 and of reconstructed B^+ mass;

![Resolution of dilepton invariant mass](image)
Efficiency calibration

Efficiencies are estimated from simulated samples and calibrated using data, following identical procedure as in the previous analysis:

- Particle identification efficiency calibration;
- Trigger efficiency;
- Calibration of B^+ kinematics;
- Resolution of q^2 and of reconstructed B^+ mass;

Leads to excellent agreement between data and simulation

- Extensive cross checks to verify procedure
Systematic uncertainties

Main contributions to systematic uncertainty on R_K:

- **Dominant sources $\sim 1\%$**:
 - Choice of fit model.
 - Signal and partially reconstructed background shape.
 - Statistics of calibration samples.
 - Evaluated through bootstrapping method.
- **Sub-dominant sources $\sim 1\%$**:
 - Efficiency calibration.
 - Dependence on trigger calibration method.
 - Precision of the q^2 and $m(K^+e^+e^-)$ resolution correction.
 - Inaccuracies in detector material description in simulation.
Systematic uncertainties

Main contributions to systematic uncertainty on R_K:

• **Dominant sources** $\sim 1\%$:
 - Choice of fit model.
 - Signal and partially reconstructed background shape.
 - Statistics of calibration samples.
 - Evaluated through bootstrapping method.

• **Sub-dominant sources** $\sim 1\‰$:
 - Efficiency calibration.
 - Dependence on trigger calibration method.
 - Precision of the q^2 and $m(K^+e^+e^-)$ resolution correction.
 - Inaccuracies in detector material description in simulation.

Total relative systematic of $\sim 1.5\%$ in the final R_K measurement:

→ Expect the result to be dominated by statistical uncertainty
• High statistics of the control modes, not all of the backgrounds are visible in the plots

• Resolution on reconstructed B^+ mass improved by constraining dilepton invariant mass to that of J/ψ
Fits to the control modes

D. Lancierini (Universität Zürich)

On R_χ and the global significance of NP in $b \to s\ell\ell$ decays

31. August 2021
Cross check: $R_{\psi(2S)}$ double ratio

$$R_{\psi(2S)} = \frac{\mathcal{B}(B^+ \to K^+\psi(2S)(\mu\mu))}{\mathcal{B}(B^+ \to K^+\psi(2S)(ee))} \Bigg/ \frac{\mathcal{B}(B^+ \to K^+J/\psi(\mu\mu))}{\mathcal{B}(B^+ \to K^+J/\psi(ee))}$$

- Data are selected at the $\psi(2S)$ resonance with a suitable q^2 cut.
- Independent validation of double-ratio procedure.
- Test of the efficiencies at q^2 away from J/ψ.

D. Lancierini (Universität Zürich)

On R_K and the global significance of NP in $b \to s\ell\ell$ decays

31. August 2021
Cross check: $R_{\psi(2S)}$ double ratio

\[R_{\psi(2S)} = \frac{\mathcal{B}(B^+ \to K^+ \psi(2S)(\mu\mu))}{\mathcal{B}(B^+ \to K^+ \psi(2S)(ee))} \div \frac{\mathcal{B}(B^+ \to K^+ J/\psi(\mu\mu))}{\mathcal{B}(B^+ \to K^+ J/\psi(ee))} \]

- Data are selected at the $\psi(2S)$ resonance with a suitable q^2 cut.
- Independent validation of double-ratio procedure.
- Test of the efficiencies at q^2 away from J/ψ.
- Result is well compatible with unity:

Measured value $R_{\psi(2S)} = 0.997 \pm 0.011 \text{ (stat & syst)}$
Variables overlap (I)

\[B^+ \rightarrow K^+e^+e^- \]
\[B^+ \rightarrow K^+\mu^+\mu^- \]
\[B^+ \rightarrow J/\psi(e^+e^-)K^+ \]
\[B^+ \rightarrow J/\psi(\mu^+\mu^-)K^+ \]
Variables overlap (II)

\[\text{Candidates} / (\text{a. u.}) \]

\[\begin{align*}
\eta(K^+) & \quad \text{LHCb simulation} \\
\min(\eta(l^+), \eta(l^-)) & \quad \text{LHCb simulation} \\
\max(\eta(l^+), \eta(l^-)) & \quad \text{LHCb simulation} \\
\log_{10}(\chi^2_{\text{Vtx}}(B^+)) & \quad \text{LHCb simulation} \\
\log_{10}(\chi^2_{\text{IP}}(B^+)) & \quad \text{LHCb simulation}
\end{align*} \]

\[\begin{align*}
&B^+ \to K^+e^+e^- \\
&B^+ \to K^+\mu^+\mu^- \\
&B^+ \to J/\psi(e^+e^-)K^+ \\
&B^+ \to J/\psi(\mu^+\mu^-)K^+
\end{align*} \]
Additional $r_{J/\psi}$ checks

D. Lancierini (Universität Zürich)

On R_K and the global significance of NP in $b \to s\ell\ell$ decays

31. August 2021

[arXiv:2103.11769]
Cross-check: 2D $r_{J/\psi}$

The 1D $r_{J/\psi}$ cross-check is extended to two variables.

- Flatness of 2D $r_{J/\psi}$ gives confidence that efficiencies are understood across entire phase-space

2D $r_{J/\psi}$, binned in max lepton momentum and angle between leptons

LHCb simulation

$B^+ \to K^+ J/\psi(e^+e^-)$ and $B^+ \to K^+(e^+e^-)$ distributions
Correlated systematic uncertainties

- Most of the calibration histograms are computed from the normalisation modes $B^+ \to K^+ J/\psi(e^+ e^-)$ and $B^+ \to K^+ J/\psi(\mu^+ \mu^-)$, correlations among the systematic have to be properly taken into account.

- Given two efficiency estimations ϵ_1 and ϵ_2, systematics are estimated from recomputing their values in n different ways, to give

$$\sigma_1 = \left(\frac{1}{n} \sum_{i=1}^{n} (\epsilon_1^i - \bar{\epsilon}_1)^2 \right)^{\frac{1}{2}}, \quad \sigma_2 = \left(\frac{1}{n} \sum_{i=1}^{n} (\epsilon_2^i - \bar{\epsilon}_2)^2 \right)^{\frac{1}{2}}, \quad \text{cov}_{1,2} = \frac{1}{n} \sum_{i=1}^{n} (\epsilon_1^i - \bar{\epsilon}_1) \cdot (\epsilon_2^i - \bar{\epsilon}_2)$$

- The fractional error matrix is defined as:

$$\sigma = \begin{pmatrix} \sigma_1/\bar{\epsilon}_1 & \text{cov}_{1,2} \\ \text{cov}_{1,2}/\sigma_1 & \sigma_2/\bar{\epsilon}_2 \end{pmatrix}$$

- Use this procedure to calculate systematic uncertainties on $r_{J/\psi}$, $R_{\phi\pi}$ and $R_{\phi\pi}^8$
Extracting R_K from data

Perform an unbinned maximum likelihood fit to $m(K^+\ell^+\ell^-)$ distribution in fully selected $B \to K^+\mu^+\mu^-$ and $B \to K^+e^+e^-$ data, simultaneously

- R_K is one of the floating fit parameters

- Already-known efficiencies and control yields are embedded in the fit as c_{K}^{rt}

$$R_K^{rt} = \frac{N_{K\mu}\mu}{N_{Kee}} \cdot \frac{N_{KJ/\psi,ee}}{N_{KJ/\psi,\mu\mu}} \cdot \frac{\varepsilon_{Kee}^{r} \cdot \varepsilon_{KJ/\psi,\mu\mu}^{r}}{\varepsilon_{KJ/\psi,ee}^{r}} \cdot c^{rt}_{K}$$

$$-\log \mathcal{L} = \sum_{r} \sum_{i} \log P^r_{\mu}(m^{rt}_{i} \mid N_{K\mu\mu}^{r}) + \sum_{rt} \sum_{i} \log P^r_{e}(m^{rt}_{i} \mid \frac{N_{K\mu\mu}^{r} \cdot c^{rt}_{K}}{R_K}) + \sum_{j} \mathcal{G}_{j}(\boldsymbol{x}_{j} \mid \mu_{j}, \Sigma_{j})$$

- Constraints are on e.g. c^{rt}_{K}, background normalisation, relative signal yields
Result on electrons branching fraction

• Combining the measured R_K value with $\mathcal{B}(B^+ \rightarrow K^+ \mu^+ \mu^-)$ result from [JHEP 06 (2014) 133] gives:

\[
\int_{q^2=1.1 \text{ GeV}^2}^{q^2=6 \text{ GeV}^2} \frac{d\mathcal{B}(B^+ \rightarrow K^+ e^+ e^-)}{dq^2} dq^2 = (28.6^{+1.5}_{-1.4} \text{ (stat.)} \pm 1.3 \text{ (syst.)}) \times 10^{-9}
\]

• Suggesting that electrons are more SM-like than muons.

[arXiv:2103.11769]
Inclusion of C_7, C'_7

- Generated toys based on SM $B^0 \rightarrow K^{*}e e$ with experimental uncertainty.

- In the toy fit, added as a constraint to C_7, C'_7 the results previous to flavour anomalies from $b \rightarrow s\gamma$ [link].

- Adding the difference in the likelihood to the LEE paper results and updating the fit to data to include $B^0 \rightarrow K^{*}e e$ and $b \rightarrow s\gamma$ yields a shift in significance of $\sim -2\%$